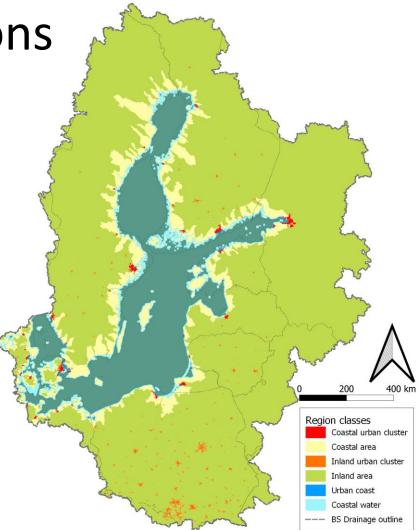


API emissions to the Baltic Sea

Lauri Äystö Finnish Environment Institute, SYKE CWPharma project final webinar 18th November 2020

CWPharma calculation excercise

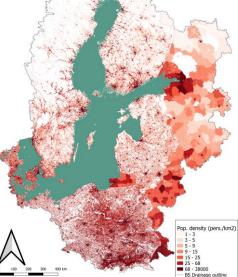
• Aim


- Increase knowledge on total emissions of selected APIs into the Baltic Sea
- Identify areas most relevant for API emissions

Approach

- Creating a GIS-based calculation tool, input countryspecifically from partners or open sources
- Same calculation tool to be utilized in WP5 for emission reduction

Scope of the calculations


- Sales as the driving parameter
- The calculation tool covers the Baltic Sea drainage basin
- Loads estimated to coastal areas & river mouths
- Rough concentration estimates based on loads

Selected APIs

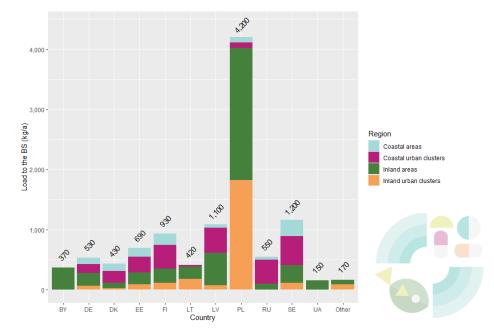
- Population density
- Calculations were carried out for \downarrow

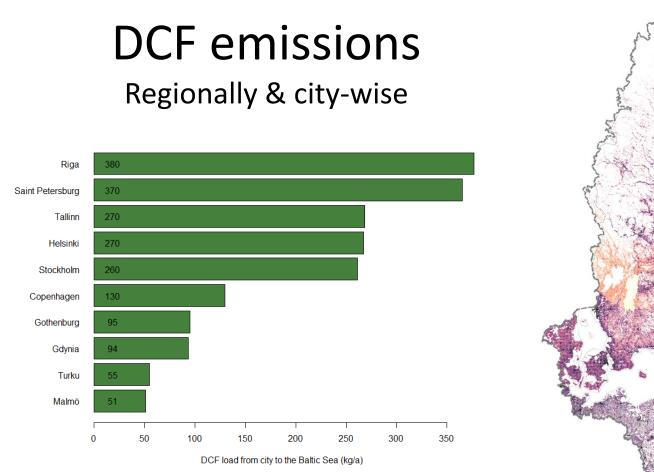
	ADY	Sales										Per capita	
API		Sales	DE	EE	FI	LV	SE	PL	LT	DK ²⁾	RU	avg ⁴⁾	
RQ>1	Diclofenac	kg/a	27 000	1 500	2 500	2 000	2 800	8 000	510	910	20 000 ³⁾	0.61	
		mg/d/p.	0.90	3.1	1.2	2.7	0.78	0.58 ¹⁾	0.711)	0.44	0.37		
Ž	Clarithromycin	kg/a	11 000	410	220	450	630	8 600	130	470		0.41	
		mg/d/p.	0.37	0.86	0.11	0.63	0.17	0.621)	0.181)	0.23			
- I	Metformin	kg/a	1 600 000	23 000	150 000	29 000	110 000	670 000	19 000	92 000			
		mg/d/p.	54	47	75	41	32	48 ¹⁾	26 ¹⁾	44		51	
	Ibuprofen	kg/a	340 000	15 000	120 000	20 000	120 000	8 500	3 900	64 000		12	
		mg/d/p.	11	32	61	28	32	0.611)	5·5 ¹⁾	31		13	
	Ofloxacin	kg/a	22 000	3,7	11	27	0,013			0,017		0.013	
		mg/d/p.	0.02	0.008	0.005	0.04	3.59E-06			8.2E-06			
	Tramadol	kg/a	21 000	320	1 700	360	3 500			6 400		0.87	
freq.		mg/d/p.	0.72	0.67	0.86	0.5	0.97			3.1			
	Venlafaxine	kg/a	19 000	120	2 000	57	3 600			2 400		0.70	
		mg/d/p.	0.64	0.24	0.98	0.08	0.99			1.1			
	Carbamazepine	kg/a	37 000	1 000	3 000	1 400	5 900	27 000	400	1 800		1.4	
High		mg/d/p.	1.2	2.2	1.5	2.0	1.6	2.0 ¹⁾	0.56 ¹⁾	0.88			

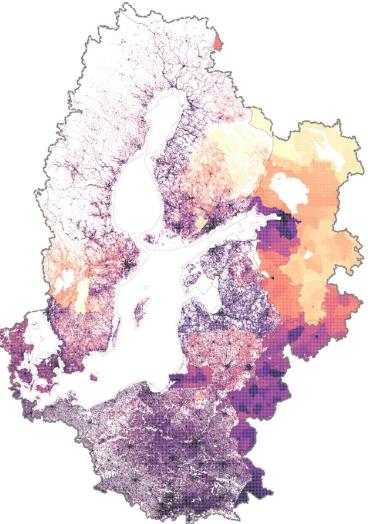
MORPHEUS Medstat.dk

3) HELCOM 2014

Calculated as population weighted per capita consumption based on countries with sales statistics available. This value was used whenever no country-specific value was available.

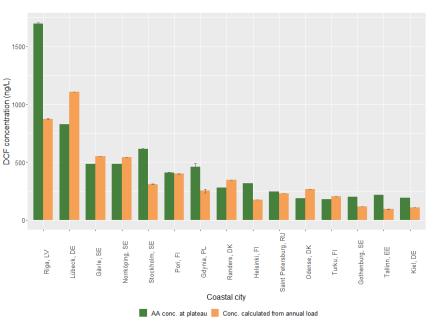


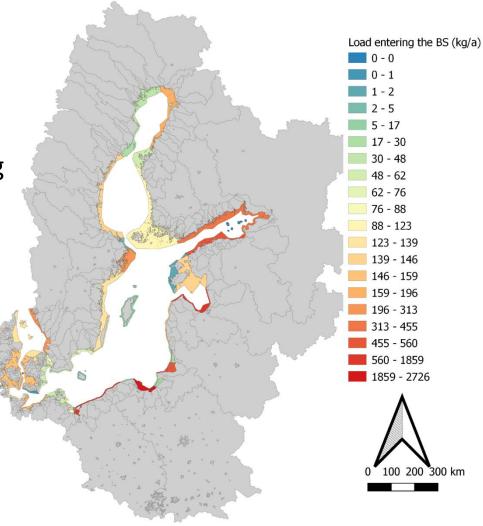

Results



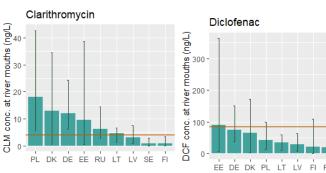
Diclofenac

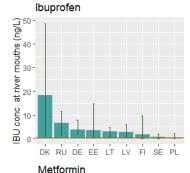
- Total load to the Baltic Sea was estimated to be 9.6 12 tonnes
- The majority of this load was estimated to originate from inland areas in Poland
- Coastal urban clusters accounted for 20 – 25% of the total load

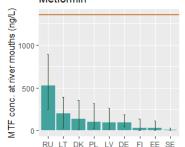


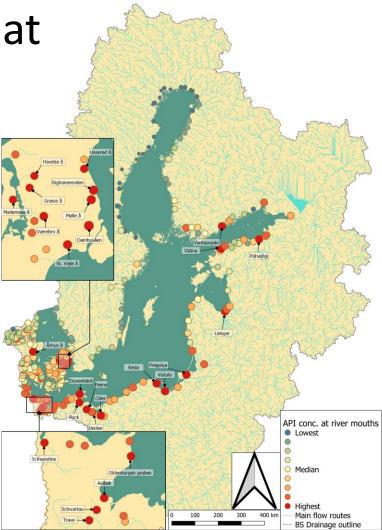


DCF coast

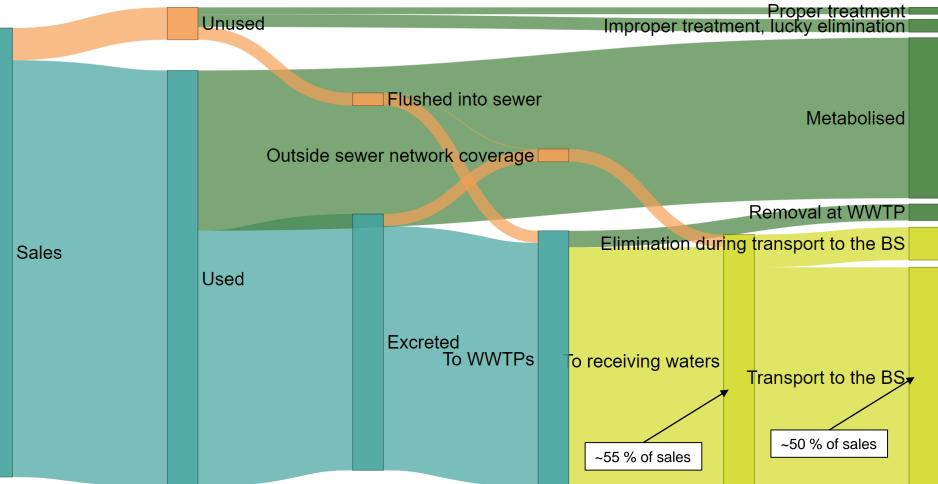

 Coastal concs likely overestimated, but help pinpointing hotspots






Predicted concentrations at river mouths

- Diclofenac, clarithromycin and ibuprofen were estimated to exceed
 PNECs at river mouths
- Concentrations generally higher than detected



DCF flows

Conclusions (1/2)

- National total emissions of the selected APIs were estimated to be highest in PL and RU
 - More variation in national per capita emissions
- Concentrations in river waters estimated to be generally highest in southern parts of the BSR

Country	Population	Per ca	N								
Country		IBU	DCF	CBZ	MTF	TRD	CLM	OFL	VFX	Notation	
DE	2 945 092	9,2	180	22	220	30	29	0.72	14	Highost	
DK	4 879 992	25	89	16	180	130	18	0.00037	25	Highest	
EE	1 290 739	20	540	39	200	24	68	0,34	4,4	2. Highest	
FL	5 313 289	15	180	18	310	22	8,2	0,24	11		
LT	3 026 584	4,8	94	7,7	260	37	10	0.71	16	2 Highost	
LV	2 079 911	53	520	41	1200	21	52	2.4	1.8	3. Highest	
PL	38 431 200	0,52	110	41	200	36	50	0.60	16		
RU	9 443 010	58	58	32	5800	30	37	1.8	14	Lowest	
SE	9 349 371	8,8	120	18	130	28	13	0,00016	12		

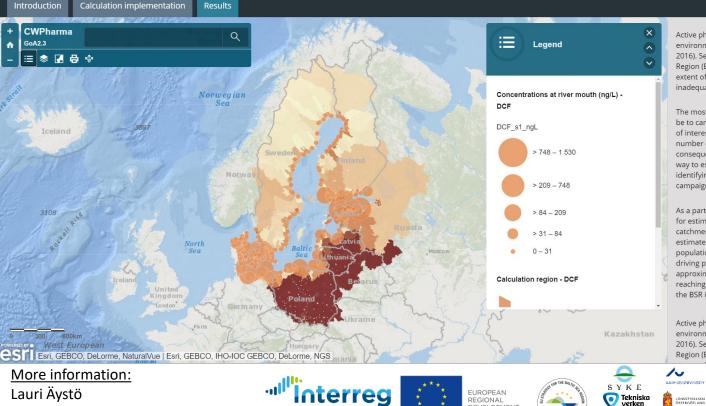
Conclusions (2/2)

- The calculation tool seems to work well in estimating total loads, and in identifying potential hotspots for API occurrence
- Statistics on pharmaceutical sales and waste management should be improved to allow for more accurate simulations
- Information on river flow velocities, stratification of water bodies, and temperature fluctuations would help improve the simulations
- Usually little data on API degradation in the environment. More & better data would allow for more robust estimates.

Thank you!

DEVELOPMENT

FUND


EUROPEAN UNION

Clear Waters from Pharmaceuticals 🛛 🖪 🕑 🔗

Lauri.aysto@ymparisto.fi

+358295251843

Baltic Sea Region

Active pharmaceutical ingredients (APIs) have been detected in environmental samples in every inhabited continent (aus der Beek et al. 2016). Several APIs have also been detected the environment in the Baltic Sea Region (BSR) (UNESCO & HELCOM 2017). However, knowledge about the extent of contamination by pharmaceuticals entering the Baltic Sea is inadequate.

The most straight forward way of improving knowledge on the topic would be to carry out extensive screening campaigns. However, due to a wide area of interest with varying environmental conditions, this would require a high number of samples, resulting in high costs. Simulating the emissions and consequent loads to different compartments could be a more cost-efficient way to estimate the overall situation. This approach would also help in identifying potential hot spots, and thereby help in planning future screening campaigns.

As a part of the project CWPharma we developed a GIS-cased calculation tool for estimating the API-load entering the Baltic Sea (BS), originating within the catchment area. Since the primary emission source of API-emissions is estimated to be consumption and subsequent excretion (e.g. EC 2019), population and API-specific national sales information were selected as the driving parameters of the model. The BS catchment area is inhabited by approximately 82.9 million people, with the consumption of individual APIs reaching an estimated 1.5 tonnes per year. The population distribution within the BSR is presented in Figure 1.

Active pharmaceutical ingredients (APIs) have been detected in environmental samples in every inhabited continent (aus der Beek et al. 2016). Several APIs have also been detected the environment in the Baltic Sea Region (BSR) (UNESCO & HELCOM 2017). However, knowledge about the

EKUK

fimea

Ð

IOŚ-PIB

Umwelt G Bundesam

LATVIJAS HIDROEKOLOĢIJAS